Thursday, September 29, 2022
HomeNanotechnologySelf-redox reaction driven in situ formation of Cu2O/Ti3C2Tx nanosheets boost the photocatalytic...

Self-redox reaction driven in situ formation of Cu2O/Ti3C2Tx nanosheets boost the photocatalytic eradication of multi-drug resistant bacteria from infected wound | Journal of Nanobiotechnology

[ad_1]

  • Bloom DE, Cadarette D. Infectious disease threats in the twenty-first century: strengthening the global response. Front Immunol. 2019;10:549.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Toner E, Adlja A, Gronvall GK, Cicero A, Inglesby TV. Antimicrobial resistance is a global health emergency. Health Secur. 2015;13:153–5.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Afonso AC, Oliveira D, Saavedra MJ, Borges A, Simões M. Biofilms in diabetic foot ulcers: impact, risk factors and control strategies. Int J Mol Sci. 2021;22:8278.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8:423–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009;325:1089–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17:141–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15:422–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016;13:e1002184.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-a minireview. Nanoscale Horiz. 2019;4:117–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48:415–27.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227.

    CAS 
    Article 

    Google Scholar
     

  • Zheng K, Xie J. Cluster materials as traceable antibacterial agents. Acc Mater Res. 2021;2:1104–16.

    CAS 
    Article 

    Google Scholar
     

  • Nain A, Tseng YT, Wei SC, Periasamy AP, Huang CC, Tseng FG, et al. Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. Nanoscale. 2020;389: 121821.

    CAS 

    Google Scholar
     

  • Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124:1032–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater. 2020;32:1904106.

    CAS 
    Article 

    Google Scholar
     

  • Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20:2468.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Bondarenko O, Juganson K. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–200.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10:339–54.

    Article 
    CAS 

    Google Scholar
     

  • Dwivedi N, Dhand C, Kumar P, Srivastava AK. Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater Adv. 2021;2:2892–905.

    CAS 
    Article 

    Google Scholar
     

  • Sun W, Wu F. Two-dimensional materials for antimicrobial applications: graphene materials and beyond. Chem Asian J. 2018;13:3378–410.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Begum S, Pramanik A, Davis D, Patibandla S, Gates K, Gao Y, et al. 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega. 2020;5:3116–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nanobiotechnol J, Zhao B, Wang H, Dong W, Cheng S, Li H, et al. A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms. J Nanobiotechnol. 2020;18:1–25.

    Article 
    CAS 

    Google Scholar
     

  • Ding H, Han D, Han Y, Liang Y, Liu X, Li Z. Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization. J Hazard Mater. 2020;393: 122423.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv Mater. 2021;33:2103393.

    CAS 
    Article 

    Google Scholar
     

  • Meng W, Liu X, Song H, Xie Y, Shi X, Dargusch M, et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today. 2021;40: 101273.

    CAS 
    Article 

    Google Scholar
     

  • Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D Mxenes. Adv Mater. 2021;33:2103148.

    CAS 
    Article 

    Google Scholar
     

  • Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci. 2018;5:1800518.

    Article 
    CAS 

    Google Scholar
     

  • Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47:5109–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep. 2017;7:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Arabi Shamsabadi A, Sharifian GhM, Anasori B, Soroush M. Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain Chem Eng. 2018;6:16586–96.

    CAS 
    Article 

    Google Scholar
     

  • Li J, Li Z, Liu X, Li C, Zheng Y, Yeung KWK, et al. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun. 2021;12:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Zheng K, Li S, Jing L, Chen P, Xie J. Synergistic antimicrobial titanium carbide (MXene) conjugated with gold nanoclusters. Adv Healthc Mater. 2020;9:2001007.

    CAS 
    Article 

    Google Scholar
     

  • Wu C-W, Unnikrishnan B, Chen I-WP, Harroun SG, Chang H-T, Huang C-C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 2020;25:563–71.

    Article 

    Google Scholar
     

  • Hou T, Wang B, Ma M, Feng A, Huang Z, Zhang Y, et al. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos Part B Eng. 2020;180: 107577.

    CAS 
    Article 

    Google Scholar
     

  • Wu X, Wang Z, Yu M, Xiu L, Qiu J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater. 2017;29:1607017.

    Article 
    CAS 

    Google Scholar
     

  • Zhang M, Chen X, Sui J, Abraha BS, Li Y, Peng W, et al. Improving the performance of a titanium carbide MXene in supercapacitors by partial oxidation treatment. Inorg Chem Front. 2020;7:1205–11.

    CAS 
    Article 

    Google Scholar
     

  • Wang Z, Xu Z, Huang H, Chu X, Xie Y, Xiong D, et al. Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano. 2020;14:4916–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • She H, Zhou H, Li L, Zhao Z, Jiang M, Huang J, et al. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain Chem Eng. 2018;7:650–9.

    Article 
    CAS 

    Google Scholar
     

  • Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29:4848–56.

    CAS 
    Article 

    Google Scholar
     

  • Guo Z, Gao L, Xu Z, Teo S, Zhang C, Kamata Y, et al. High electrical conductivity 2D MXene serves as additive of perovskite for efficient solar cells. Small. 2018;14:1802738.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Ren A, Wu J, Wang Z. Recent advances in 2D MXenes for photodetection. Adv Funct Mater. 2020;30:2000907.

    CAS 
    Article 

    Google Scholar
     

  • Chen G, Wang H, Wei X, Wu Y, Gu W, Hu L, et al. Efficient Z-Scheme heterostructure based on TiO2/Ti3C2Tx/Cu2O to boost photoelectrochemical response for ultrasensitive biosensing. Sensors Actuators B Chem. 2020;312: 127951.

    CAS 
    Article 

    Google Scholar
     

  • Cai T, Wang L, Liu Y, Zhang S, Dong W, Chen H, et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B Environ. 2018;239:545–54.

    CAS 
    Article 

    Google Scholar
     

  • Nain A, Tseng YT, Gupta A, Lin YF, Sangili A, Huang YF, et al. Anti-microbial/oxidative/inflammatory nanogels accelerate chronic wound healing. Smart Mater Med. 2022. https://doi.org/10.1016/j.smaim.2021.12.006.

    Article 

    Google Scholar
     

  • Mishin V, Gray JP, Heck DE, Laskin DL, Laskin JD. Application of the Amplex red/horseradish peroxidase assay to measure hydrogen peroxide generation by recombinant microsomal enzymes. Free Radic Biol Med. 2010;48:1485–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang S, Cao C, Lv X, Dai H, Zhong Z, Liang C, et al. A H2O2 self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chem Sci. 2020;11:1926–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dvoranová D, Barbieriková Z, Brezová V. Radical intermediates in photoinduced reactions on TiO2 (an EPR spin trapping study). Molecules. 2014;19:17279–304.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Deng L, Sheng D, Liu M, Yang L, Ran H, Li P, et al. A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomater Sci. 2020;8:858–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010;82:330–3.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhao Y, Zhang S, Shi R, Waterhouse GIN, Tang J, Zhang T. Two-dimensional photocatalyst design: a critical review of recent experimental and computational advances. Mater Today. 2020;34:78–91.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Y, Xia W, Wu Y, Zhang P. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale. 2019;11:3993–4000.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akhtar N, Rani M, Mahmood A, Saba H, Khan S, Murtaza G, et al. Synthesis and characterization of MXene/BiCr2O4 nanocomposite with excellent electrochemical properties. J Mater Res Technol. 2021;15:2007–15.

    CAS 
    Article 

    Google Scholar
     

  • Liu T, Xiao B, Xiang F, Tan J, Chen Z, Zhang X, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11:1–16.

    CAS 
    Article 

    Google Scholar
     

  • Wang W, Feng H, Liu J, Zhang M, Liu S, Feng C, et al. A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability. Chem Eng J. 2020;386: 124116.

    CAS 
    Article 

    Google Scholar
     

  • Xu D, Li Z, Li L, Wang J. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater. 2020;30:2000712.

    CAS 
    Article 

    Google Scholar
     

  • Hu W, Miao X, Tao H, Baev A, Ren C, Fan Q, et al. Manipulating nonradiative decay channel by intermolecular charge transfer for exceptionally improved photothermal conversion. ACS Nano. 2019;13:12006–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Han X, Huang J, Lin H, Wang Z, Li P, Chen Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv Healthc Mater. 2018. https://doi.org/10.1002/adhm.201701394.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano. 2017;11:3752–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boerigter C, Campana R, Morabito M, Linic S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat Commun. 2016;7:1–9.

    Article 
    CAS 

    Google Scholar
     

  • Shi Y, Cui D, Zhang Z. Quantitative study of the nonlinearly enhanced photoacoustic/ photothermal effect by strong LSPR-coupled nanoassemblies. Nanomaterials. 2020;10:1942.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu Y, Tian Y, Han Q, Yin J, Zhang J, Yu Y, et al. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chem Eng J. 2021;410: 128209.

    CAS 
    Article 

    Google Scholar
     

  • Wang D, Fang Y, Yu W, Wang L, Xie H, Yue Y. Significant solar energy absorption of MXene Ti3C2Tx nanofluids via localized surface plasmon resonance. Sol Energy Mater Sol Cells. 2021;220: 110850.

    CAS 
    Article 

    Google Scholar
     

  • Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nain A, Wei SC, Lin YF, Tseng YT, Mandal RP, Huang YF, et al. Copper sulfide nanoassemblies for catalytic and photoresponsive eradication of bacteria from infected wounds. ACS Appl Mater Interfaces. 2021;13:7865–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hudson MA, Siegele DA, Lockless SW. Use of a fluorescence-based assay to measure Escherichia coli membrane potential changes in high throughput. Antimicrob Agents Chemother. 2020;64:e00910-e920.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Parastan R, Kargar M, Solhjoo K, Kafilzadeh F. Staphylococcus aureus biofilms: structures, antibiotic resistance, inhibition, and vaccines. Gene Reports. 2020;20: 100739.

    Article 

    Google Scholar
     

  • Ishida Y, Kuninaka Y, Nosaka M, Furuta M, Kimura A, Taruya A, et al. CCL2-mediated reversal of impaired skin wound healing in diabetic mice by normalization of neovascularization and collagen accumulation. J Invest Dermatol. 2019;139:2517–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Banerjee K, Madhyastha R, Nakajima Y, Maruyama M, Madhyastha H. Nanoceutical adjuvants as wound healing material: precepts and prospects. Int J Mol Sci. 2021;22:4748.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73:3861–85.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nain A, Huang HH, Chevrier DM, Tseng YT, Sangili A, Lin YF, et al. Catalytic and photoresponsive bismuth-doped copper sulfide nanocomposites with multiple heterojunctions and surface vacancies for the treatment of multidrug-resistant clinical biofilm-associated infections. Nanoscale. 2021;13:18632–46.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments