Monday, November 28, 2022
HomeNanotechnologyNOX4 blockade suppresses titanium nanoparticle-induced bone destruction via activation of the Nrf2...

NOX4 blockade suppresses titanium nanoparticle-induced bone destruction via activation of the Nrf2 signaling pathway | Journal of Nanobiotechnology

[ad_1]

  • Singh JA, Yu S, Chen L, Cleveland JD. Rates of total joint replacement in the united states: future projections to 2020–2040 using the national inpatient sample. J Rheumatol. 2019;46:1134–40.

    PubMed 
    Article 

    Google Scholar
     

  • Goodman SB, Gallo J. Periprosthetic osteolysis: mechanisms, prevention and treatment. J Clin Med. 2019;8:2091.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quicke JG, Conaghan PG, Corp N, Peat G. Osteoarthritis year in review 2021: epidemiology and therapy. Osteoarthritis Cartilage. 2022;30:196–206.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials. 2021;278:121127.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mahon OR, Dunne A. Disease-associated particulates and joint inflammation; mechanistic insights and potential therapeutic targets. Front Immunol. 2018;9:1145.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dyskova T, Gallo J, Kriegova E. The role of the chemokine system in tissue response to prosthetic by-products leading to periprosthetic osteolysis and aseptic loosening. Front Immunol. 2017;8:1026.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Delaisse JM, Andersen TL, Kristensen HB, Jensen PR, Andreasen CM, Soe K. Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone. 2020;141: 115628.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coury F, Peyruchaud O, Machuca-Gayet I. Osteoimmunology of bone loss in inflammatory rheumatic diseases. Front Immunol. 2019;10:679.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kanzaki H, Shinohara F, Kanako I, Yamaguchi Y, Fukaya S, Miyamoto Y, Wada S, Nakamura Y. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biol. 2016;8:186–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci. 2019;20:3576.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schroder K. NADPH oxidases in bone homeostasis and osteoporosis. Free Radic Biol Med. 2019;132:67–72.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sun KY, Wu Y, Xu J, Xiong W, Xu W, Li J, Sun Z, Lv Z, Wu XS, Jiang Q, et al. Niobium carbide (MXene) reduces UHMWPE particle-induced osteolysis. Bioact Mater. 2022;8:435–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xian Y, Su Y, Liang J, Long F, Feng X, Xiao Y, Lian H, Xu J, Zhao J, Liu Q, Song F. Oroxylin A reduces osteoclast formation and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation. Biochem Pharmacol. 2021;193: 114761.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: a promising therapeutic target. J Orthop Res. 2020;38:2104–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease. Mol Aspects Med. 2018;63:18–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takac I, Schroder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem. 2011;286:13304–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guerin S, Harty J, Thompson N, Bryan K. Hydrogen peroxide as an irrigation solution in arthroplasty—a potential contributing factor to the development of aseptic loosening. Med Hypotheses. 2006;66:1142–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guerin SR, MacNiochaill R, O’Reilly P, O’Byrne J, Kelly DJ. A comparative study of the effect of hydrogen peroxide versus normal saline on the strength of the bone-cement interface. Biomed Mater Eng. 2007;17:379–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Goettsch C, Babelova A, Trummer O, Erben RG, Rauner M, Rammelt S, Weissmann N, Weinberger V, Benkhoff S, Kampschulte M, et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis. J Clin Invest. 2013;123:4731–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun J, Chen W, Li S, Yang S, Zhang Y, Hu X, Qiu H, Wu J, Xu S, Chu T. Nox4 promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2alpha/ATF4 pathway. Front Pharmacol. 2021;12: 751845.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Romeo SG, Alawi KM, Rodrigues J, Singh A, Kusumbe AP, Ramasamy SK. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat Cell Biol. 2019;21:430–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Y, Wang C, Wang G, Sun Y, Deng Z, Chen L, Chen K, Tickner J, Kenny J, Song D, et al. Loureirin B suppresses RANKL-induced osteoclastogenesis and ovariectomized osteoporosis via attenuating NFATc1 and ROS activities. Theranostics. 2019;9:4648–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akisaka T, Yoshida H, Inoue S, Shimizu K. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J Bone Miner Res. 2001;16:1248–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weng Y, Wang H, Li L, Feng Y, Xu S, Wang Z. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol. 2021;40: 101849.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sun YX, Xu AH, Yang Y, Li J. Role of Nrf2 in bone metabolism. J Biomed Sci. 2015;22:101.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sanchez-de-Diego C, Pedrazza L, Pimenta-Lopes C, Martinez-Martinez A, Dahdah N, Valer JA, Garcia-Roves P, Rosa JL, Ventura F. NRF2 function in osteocytes is required for bone homeostasis and drives osteocytic gene expression. Redox Biol. 2021;40: 101845.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 2013;9:8046–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone. 2016;86:119–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bi H, Chen X, Gao S, Yu X, Xiao J, Zhang B, Liu X, Dai M. Key triggers of osteoclast-related diseases and available strategies for targeted therapies: a review. Front Med (Lausanne). 2017;4:234.

    Article 

    Google Scholar
     

  • Lo JC, Grimsrud CD, Ott SM, Chandra M, Hui RL, Ettinger B. Atypical femur fracture incidence in women increases with duration of bisphosphonate exposure. Osteoporos Int. 2019;30:2515–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shi M, Chen L, Xin Z, Wang Y, Wang W, Yan S. Bisphosphonates for the preservation of periprosthetic bone mineral density after total joint arthroplasty: a meta-analysis of 25 randomized controlled trials. Osteoporos Int. 2018;29:1525–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Yang Y, Liao Z, Liu Q, Lei X, Li M, Saijilafu, Zhang Z, Hong D, Zhu M, et al. Genetic and pharmacological activation of Hedgehog signaling inhibits osteoclastogenesis and attenuates titanium particle-induced osteolysis partly through suppressing the JNK/c-Fos-NFATc1 cascade. Theranostics. 2020;10:6638–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Almeida M, Porter RM. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone. 2019;121:284–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38:167–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217:1915–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30:440–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863:2977–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu C, Wang W, Tian B, Liu X, Qu X, Zhai Z, Li H, Liu F, Fan Q, Tang T, et al. Myricetin prevents titanium particle-induced osteolysis in vivo and inhibits RANKL-induced osteoclastogenesis in vitro. Biochem Pharmacol. 2015;93:59–71.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab. 2015;33:359–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu S, Xue Y, He J, Chen C, Sun J, Jin Y, Zhang Y, Shi Q, Rui Y. Irisin recouples osteogenesis and osteoclastogenesis to protect wear-particle-induced osteolysis by suppressing oxidative stress and RANKL production. Biomater Sci. 2021;9:5791–801.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res. 2012;110:1217–25.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yang S, Zhang Y, Ries W, Key L. Expression of Nox4 in osteoclasts. J Cell Biochem. 2004;92:238–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schroder K. NADPH oxidases in bone homeostasis and osteoporosis. Cell Mol Life Sci. 2015;72:25–38.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, et al. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-kappab signaling. Redox Biol. 2020;28: 101309.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kanzaki H, Shinohara F, Kajiya M, Kodama T. The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem. 2013;288:23009–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med. 2013;65:789–99.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li ZM, Xu SY, Feng YZ, Cheng YR, Xiong JB, Zhou Y, Guan CX. The role of NOX4 in pulmonary diseases. J Cell Physiol. 2021;236:1628–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meng XM, Ren GL, Gao L, Yang Q, Li HD, Wu WF, Huang C, Zhang L, Lv XW, Li J. NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. Lab Invest. 2018;98:63–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med. 2019;145:385–427.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang L, Haddouti EM, Welle K, Burger C, Wirtz DC, Schildberg FA, Kabir K. The effects of biomaterial implant wear debris on osteoblasts. Front Cell Dev Biol. 2020;8:352.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jin Y, Chen S, Li N, Liu Y, Cheng G, Zhang C, Wang S, Zhang J. Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways. Sci China Life Sci. 2018;61:464–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kalbacova M, Roessler S, Hempel U, Tsaryk R, Peters K, Scharnweber D, Kirkpatrick JC, Dieter P. The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and monocytes/macrophages. Biomaterials. 2007;28:3263–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang W, Shang WL, Li DH, Wu WW, Hou SX. Simvastatin protects osteoblast against H2O2-induced oxidative damage via inhibiting the upregulation of Nox4. Mol Cell Biochem. 2012;360:71–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu G, Li X, Zhu Z, Wang H, Bai X. Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in Mc3t3-E1 cells. Biol Trace Elem Res. 2021;199:3781–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moon JS, Nakahira K, Chung KP, DeNicola GM, Koo MJ, Pabon MA, Rooney KT, Yoon JH, Ryter SW, Stout-Delgado H, Choi AM. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat Med. 2016;22:1002–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, Han Y, Lu D, Lu S, Gui L. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater. 2021;6:1255–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qu S, Bai Y, Liu X, Fu R, Duan K, Weng J. Study on in vitro release and cell response to alendronate sodium-loaded ultrahigh molecular weight polyethylene loaded with alendronate sodium wear particles to treat the particles-induced osteolysis. J Biomed Mater Res A. 2013;101:394–403.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • von Knoch M, Jewison DE, Sibonga JD, Sprecher C, Morrey BF, Loer F, Berry DJ, Scully SP. The effectiveness of polyethylene versus titanium particles in inducing osteolysis in vivo. J Orthop Res. 2004;22:237–43.

    Article 
    CAS 

    Google Scholar
     

  • Wooley PH, Morren R, Andary J, Sud S, Yang SY, Mayton L, Markel D, Sieving A, Nasser S. Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials. 2002;23:517–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments