Sunday, September 25, 2022
HomeNanotechnologyHighly potent multivalent VHH antibodies against Chikungunya isolated from an alpaca naïve...

Highly potent multivalent VHH antibodies against Chikungunya isolated from an alpaca naïve phage display library | Journal of Nanobiotechnology

[ad_1]

  • Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffenecker I, Desprès P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4(2):e29.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT. Chikungunya: a re-emerging virus. Lancet. 2012;379(9816):662–71.

    PubMed 
    Article 

    Google Scholar
     

  • Joshi P, Yadav P, Mourya D, Sahare L, Ukey M, Khedekar R, Patil D, Barde PV. Laboratory surveillance of Chikungunya in Madhya Pradesh, India (2016–2017). Indian J Med Res. 2020;151(1):87–92.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nunes MR, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, Azevedo Rdo S, da Silva DE, da Silva EV, da Silva SP, Carvalho VL, Coelho GE, Cruz AC, Rodrigues SG, Vianez JL Jr, Nunes BT, Cardoso JF, Tesh RB, Hay SI, Pybus OG, Vasconcelos PF. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 2015;13:102.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, Benyon E, Guillaumot L, Souares Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections—an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill. 2014;19(41):20929.

    PubMed 
    Article 

    Google Scholar
     

  • Gérardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, Lenglet Y, Touret Y, Bouveret A, Grivard P, Le Roux K, Blanc S, Schuffenecker I, Couderc T, Arenzana-Seisdedos F, Lecuit M, Robillard PY. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med. 2008;5(3):e60.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Metz SW, Gardner J, Geertsema C, Le TT, Goh L, Vlak JM, Suhrbier A, Pijlman GP. Effective Chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl Trop Dis. 2013;7(3):e2124.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun S, Xiang Y, Akahata W, Holdaway H, Pal P, Zhang X, Diamond MS, Nabel GJ, Rossmann MG. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. Elife. 2013;2:e00435.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J, Mietzsch M, Modha S, Ogliastro M, Pénzes JJ, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Ictv Report Consortium. ICTV virus taxonomy profile: parvoviridae. J Gen Virol. 2019;100(3):367–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468(7324):709–12.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim AS, Zimmerman O, Fox JM, Nelson CA, Basore K, Zhang R, Durnell L, Desai C, Bullock C, Deem SL, Oppenheimer J, Shapiro B, Wang T, Cherry S, Coyne CB, Handley SA, Landis MJ, Fremont DH, Diamond MS. An evolutionary insertion in the Mxra8 receptor-binding site confers resistance to alphavirus infection and pathogenesis. Cell Host Microbe. 2020;27(3):428-440.e9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang R, Kim AS, Fox JM, Nair S, Basore K, Klimstra WB, Rimkunas R, Fong RH, Lin H, Poddar S, Crowe JE Jr, Doranz BJ, Fremont DH, Diamond MS. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature. 2018;557(7706):570–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang NJ, Pishesha N, Mukherjee J, Zhang S, Deshycka R, Sudaryo V, Dong M, Shoemaker CB, Lodish HF. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun. 2017;8(1):423.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nordeen SA, Andersen KR, Knockenhauer KE, Ingram JR, Ploegh HL, Schwartz TU. A nanobody suite for yeast scaffold nucleoporins provides details of the nuclear pore complex structure. Nat Commun. 2020;11(1):6179.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma H, Zeng W, Meng X, Huang X, Yang Y, Zhao D, Zhou P, Wang X, Zhao C, Sun Y, Wang P, Ou H, Hu X, Xiang Y, Jin T. Potent neutralization of SARS-CoV-2 by hetero-bivalent alpaca nanobodies targeting the spike receptor-binding domain. J Virol. 2021;95(10):e02438-e2520.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies’ singular traits. Annu Rev Immunol. 2018;36:695–715.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V, Millar A, Power UF, Stortelers C, Allosery K, Melero JA, Depla E. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob Agents Chemother. 2015;60(1):6–13.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Crasson O, Rhazi N, Jacquin O, Freichels A, Jérôme C, Ruth N, Galleni M, Filée P, Vandevenne M. Enzymatic functionalization of a nanobody using protein insertion technology. Protein Eng Des Sel. 2015;28(10):451–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • De Genst E, Chan PH, Pardon E, Hsu SD, Kumita JR, Christodoulou J, Menzer L, Chirgadze DY, Robinson CV, Muyldermans S, Matagne A, Wyns L, Dobson CM, Dumoulin M. A nanobody binding to non-amyloidogenic regions of the protein human lysozyme enhances partial unfolding but inhibits amyloid fibril formation. J Phys Chem B. 2013;117(42):13245–58.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Dong J, Huang B, Jia Z, Wang B, Gallolu Kankanamalage S, Titong A, Liu Y. Development of multi-specific humanized llama antibodies blocking SARS-CoV-2/ACE2 interaction with high affinity and avidity. Emerg Microbes Infect. 2020;9(1):1034–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, Ren J, Zhou D, Harrison PJ, Weckener M, Clare DK, Vogirala VK, Radecke J, Moynié L, Zhao Y, Gilbert-Jaramillo J, Knight ML, Tree JA, Buttigieg KR, Coombes N, Elmore MJ, Carroll MW, Carrique L, Shah PNM, James W, Townsend AR, Stuart DI, Owens RJ, Naismith JH. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol. 2020;27(9):846–54.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan J, Wang P, Zhu M, Li G, Romão E, Xiong S, Wan Y. Characterization and applications of nanobodies against human procalcitonin selected from a novel naïve nanobody phage display library. J Nanobiotechnology. 2015;13:33.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Zhou L, Du K, Zhang Y, Wang J, Chen L, Lyu Y, Li J, Liu H, Huo J, Li F, Wang J, Sang P, Lin S, Xiao Y, Zhang K, He K. Foundation and clinical evaluation of a new method for detecting SARS-CoV-2 antigen by fluorescent microsphere immunochromatography. Front Cell Infect Microbiol. 2020;10:553837.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmidt FI, Lu A, Chen JW, Ruan J, Tang C, Wu H, Ploegh HL. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med. 2016;213(5):771–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu Q, Zhang Z, Li H, Zhong K, Zhao Q, Wang Z, Wu Z, Yang D, Sun S, Yang N, Zheng M, Chen Q, Long C, Guo W, Yang H, Nie C, Tong A. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J Nanobiotechnology. 2021;19(1):33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou QF, Fox JM, Earnest JT, Ng TS, Kim AS, Fibriansah G, Kostyuchenko VA, Shi J, Shu B, Diamond MS, Lok SM. Structural basis of Chikungunya virus inhibition by monoclonal antibodies. Proc Natl Acad Sci U S A. 2020;117(44):27637–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tumkosit U, Siripanyaphinyo U, Takeda N, Tsuji M, Maeda Y, Ruchusatsawat K, Shioda T, Mizushima H, Chetanachan P, Wongjaroen P, Matsuura Y, Tatsumi M, Tanaka A. Anti-Chikungunya virus monoclonal antibody that inhibits viral fusion and release. J Virol. 2020;94(19):e00252-e320.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A, Kruse AC, Marks DS. Protein design and variant prediction using autoregressive generative models. Nat Commun. 2021;12(1):2403.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee CV, Liang WC, Dennis MS, Eigenbrot C, Sidhu SS, Fuh G. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. J Mol Biol. 2004;340(5):1073–93.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eden T, Menzel S, Wesolowski J, Bergmann P, Nissen M, Dubberke G, Seyfried F, Albrecht B, Haag F, Koch-Nolte F. A cDNA immunization strategy to generate nanobodies against membrane proteins in native conformation. Front Immunol. 2018;8:1989.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R. Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng. 1994;7(9):1129–35.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Butt TR, Edavettal SC, Hall JP, Mattern MR. SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif. 2005;43(1):1–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Panavas T, Sanders C, Butt TR. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol. 2009;497:303–17.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics. 2004;5(1–2):75–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ye T, Lin Z, Lei H. High-level expression and characterization of an anti-VEGF165 single-chain variable fragment (scFv) by small ubiquitin-related modifier fusion in Escherichia coli. Appl Microbiol Biotechnol. 2008;81(2):311–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides. 2010;31(11):1957–65.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, Chen Y, Wu X, Li H, Jiang C, Tian H, Tang L, Wang D, Yu T, Li X. SUMO fusion system facilitates soluble expression and high production of bioactive human fibroblast growth factor 23 (FGF23). Appl Microbiol Biotechnol. 2012;96(1):103–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • González AS, Guimarães Assmann AL, Romero Ramos CR, Quelopana MM, Aleixo Silva AC, Thomaz-Soccol V. Recombinant mutagenic 3ABC protein and monoclonal antibody for quality-control testing in foot-and-mouth disease vaccines. Antiviral Res. 2018;157:93–101.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chi X, Liu X, Wang C, Zhang X, Li X, Hou J, Ren L, Jin Q, Wang J, Yang W. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nat Commun. 2020;11(1):4528.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Spodzieja M, Kuncewicz K, Sieradzan A, Karczyńska A, Iwaszkiewicz J, Cesson V, Węgrzyn K, Zhukov I, Maszota-Zieleniak M, Michielin O, Speiser DE, Zoete V, Derré L, Rodziewicz-Motowidło S. Disulfide-linked peptides for blocking BTLA/HVEM binding. Int J Mol Sci. 2020;21(2):636.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Attarwala H. Role of antibodies in cancer targeting. J Nat Sci Biol Med. 2010;1:53–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Farhadi SA, Bracho-Sanchez E, Fettis MM, Seroski DT, Freeman SL, Restuccia A, Keselowsky BG, Hudalla GA. Locally anchoring enzymes to tissues via extracellular glycan recognition. Nat Commun. 2018;9(1):4943.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Hartati L, Bakti D, Tantawi AR, Lisnawita. Detection of virus causes papaya ringspot virus—with the DAS-Elisa (Double Antibody Sandwich-Enzyme-Linked Immunosorbent Assay) method at different levels in North Sumatra. Earth Environ Sci. 2020;454: 012182.

  • Wang C, Gu B, Liu Q, Pang Y, Xiao R, Wang S. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria. Int J Nanomedicine. 2018;13:1159–78.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fan B, Sun J, Zhu L, Zhou J, Zhao Y, Yu Z, Sun B, Guo R, He K, Li B. Development of a novel double antibody sandwich quantitative enzyme-linked immunosorbent assay for detection of porcine epidemic diarrhea virus antigen. Front Vet Sci. 2020;7:540248.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Choi SY, Rhie GE, Jeon JH. Development of a double-antibody sandwich ELISA for sensitive detection of Yersinia pestis. Microbiol Immunol. 2020;64(1):72–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang J, Zhang S, Ni W, Zhai X, Xie F, Yuan H, Gao S, Tai G. Development and application of a double- antibody sandwich ELISA kit for the detection of serum MUC1 in lung cancer patients. Cancer Biomark. 2016;17(4):369–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, Johnson S, Lee I, Akahata W, Nabel GJ, Richter MK, Smit JM, Fremont DH, Pierson TC, Heise MT, Diamond MS. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog. 2013;9(4):e1003312.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lum FM, Teo TH, Lee WW, Kam YW, Rénia L, Ng LF. An essential role of antibodies in the control of Chikungunya virus infection. J Immunol. 2013;190(12):6295–302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chua CL, Chan YF, Sam IC. Characterisation of mouse monoclonal antibodies targeting linear epitopes on Chikungunya virus E2 glycoprotein. J Virol Methods. 2014;195:126–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments