Friday, September 30, 2022
HomeNanotechnologyEfficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu...

Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst

[ad_1]

  • Christensen, C. H., Johannessen, T., Sørensen, R. Z. & Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 111, 140–144 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Rosca, V., Duca, M., de Groot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., Wang C, Li, M., Yu, Y. & Zhang, B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 50, 6720–6733 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Guo, J. & Chen, P. Catalyst: NH3 as an energy carrier. Chem 3, 709–712 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2, 377–380 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kyriakou, V., Garagounis, I., Vourros, A., Vasileiou, E. & Stoukides, M. An electrochemical Haber–Bosch process. Joule 4, 142–158 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 345, 610–610 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Rafiqul, I., Weber, C., Lehmann, B. & Voss, A. Energy efficiency improvements in ammonia production—perspectives and uncertainties. Energy 30, 2487–2504 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Garagounis, I., Kyriakou, V., Skodra, A., Vasileiou, E. & Stoukides, M. Electrochemical synthesis of ammonia in solid electrolyte cells. Front. Energy Res. 2, 1 (2014).

    Article 

    Google Scholar
     

  • Cui, X., Tang, C. & Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article 

    Google Scholar
     

  • Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A. & Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 286, 2–13 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Montoya, J. H., Tsai, C., Vojvodic, A. & Nørskov, J. K. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Chen, G.-F. et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Chen, P. et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl Acad. Sci. USA 116, 6635–6640 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lv, C. et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073–6076 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Tang, C. & Qiao, S.-Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48, 3166–3180 (2019).

    CAS 
    Article 

    Google Scholar
     

  • van Langevelde, P. H., Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article 

    Google Scholar
     

  • Duca, M. & Koper, M. T. M. Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 5, 9726–9742 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K. & Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B 236, 546–568 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Katsounaros, I., Dortsiou, M. & Kyriacou, G. Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes. J. Hazard. Mater. 171, 323–327 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Su, L. et al. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 120, 1–11 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T. T. P., Do, B. K. D., Bui, N. N., Pham, M. A. & Nguyen, T. V. Selectiveness of copper and polypyrrole modified copper electrodes for nitrate electroreduction: a comparative study and application in ground water. ECS Trans. 53, 41–52 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chauhan, R. & Srivastava, V. C. Electrochemical denitrification of highly contaminated actual nitrate wastewater by Ti/RuO2 anode and iron cathode. Chem. Eng. J. 386, 122065 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fernández-Nava, Y., Marañón, E., Soons, J. & Castrillón, L. Denitrification of wastewater containing high nitrate and calcium concentrations. Bioresour. Technol. 99, 7976–7981 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G.-F. et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nat. Energy 5, 605–613 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 142, 5702–5708 (2020).

    CAS 
    Article 

    Google Scholar
     

  • McEnaney, J. M. et al. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustain. Chem. Eng. 8, 2672–2681 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., Zhou, W., Jia, R., Yu, Y. & Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. 59, 5350–5354 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jia, R. et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 10, 3533–3540 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification. Proc. Natl Acad. Sci. USA 118, e2105628118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wu, Z.-Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, P., Jin, Z., Fang, Z. & Yu, G. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 14, 3522–3531 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lim, J. et al. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catal. 11, 7568–7577 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J. Am. Chem. Soc. 142, 7036–7046 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Kirkendall, E. & Smigelskas, A. Zinc diffusion in alpha brass. AIME Trans. 171, 130–142 (1947).


    Google Scholar
     

  • Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yin, Y. et al. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Yao, Y. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2, 304–313 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Huang, C. S., Houalla, M., Hercules, D. M., Kibby, C. L. & Petrakis, L. Comparison of catalysts derived from oxidation of ruthenium–thorium (Ru3Th7) with impregnated ruthenium/thoria catalysts. J. Phys. Chem. 93, 4540–4544 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Gotthardt, M. A., Schoch, R., Wolf, S., Bauer, M. & Kleist, W. Synthesis and characterization of bimetallic metal–organic framework Cu–Ru-BTC with HKUST-1 structure. Dalton Trans. 44, 2052–2056 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Sinfelt, J. H., Via, G. H. & Lytle, F. W. Structure of bimetallic clusters. Extended X‐ray absorption fine structure (EXAFS) studies of Ru–Cu clusters. J. Chem. Phys. 72, 4832–4844 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Via, G. H., Drake, K. F., Meitzner, G., Lytle, F. W. & Sinfelt, J. H. Analysis of EXAFS data on bimetallic clusters. Catal. Lett. 5, 25–33 (1990).

    CAS 
    Article 

    Google Scholar
     

  • He, X. et al. Resolving the atomic structure of sequential infiltration synthesis derived inorganic clusters. ACS Nano 14, 14846–14860 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Huang, J.-C., Shang, C. in Advanced Physicochemical Treatment Processes (eds Wang, L. K., Hung, Y.-T. & Shammas, N. K.) 47–79 (Humana Press, 2006).

  • Liao, P. H., Chen, A. & Lo, K. V. Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour. Technol. 54, 17–20 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Yuan, M.-H., Chen, Y.-H., Tsai, J.-Y. & Chang, C.-Y. Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed. Process Saf. Environ. Prot. 102, 777–785 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lozano-Perez, S. A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. Micron 39, 320–328 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Kautz, E. J. et al. Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation. npj Mater. Degrad. 4, 29 (2020).

    Article 

    Google Scholar
     

  • Gault, B., Moody, M. P., Cairney, J. M. & Ringer, S. P. Atom Probe Microscopy (Springer Science & Business Media, 2012).

  • Zhu, D., Zhang, L., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., Yu, Y., Jia, R., Zhang, C. & Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl Sci. Rev. 6, 730–738 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J.-X., Richards, D., Singh, N. & Goldsmith, B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. ACS Catal. 9, 7052–7064 (2019).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments