Wednesday, September 28, 2022
HomeNanotechnologyBioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations | Journal of...

Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations | Journal of Nanobiotechnology

[ad_1]

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discovery. 2021;20(2):101–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater. 2021;6(4):351–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deng C, Zhang Q, He P, Zhou B, He K, Sun X, et al. Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun. 2021;12(1):2174.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang Z, Little N, Chen J, Lambesis KT, Le KT, Han W, et al. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nat Nanotechnol. 2021;16(10):1130–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Z, Yeh C-F, Mellas M, Oh M-J, Zhu J, Li J, et al. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proceed Nat Academy Sci. 2021;118(50):e2114842118.

    Article 
    CAS 

    Google Scholar
     

  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discovery. 2004;3(9):785–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543–57.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. A framework for designing delivery systems. Nat Nanotechnol. 2020;15(10):819–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Myerson JW, Patel PN, Rubey KM, Zamora ME, Zaleski MH, Habibi N, et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat Nanotechnol. 2022;17(1):86–97. 2022/01/01.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceut Res. 2016;33(10):2373–87.

    CAS 
    Article 

    Google Scholar
     

  • Li S, Chen T, Wang Y, Liu L, Lv F, Li Z, et al. Conjugated polymer with intrinsic alkyne units for synergistically enhanced Raman imaging in living cells. Angew Chem Int Edit. 2017;56(43):13455–8.

    CAS 
    Article 

    Google Scholar
     

  • Zhang Y, Wang X, Chu C, Zhou Z, Chen B, Pang X, et al. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun. 2020;11(1):5421. 2020/10/27.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Marcos-Contreras OA, Greineder CF, Kiseleva RY, Parhiz H, Walsh LR, Zuluaga-Ramirez V, et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proceed Nat Academy Sci. 2020;117(7):3405–14.

    CAS 
    Article 

    Google Scholar
     

  • Ren H, Zeng X-Z, Zhao X-X, Hou D-y, Yao H, Yaseen M, et al. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat Commun. 2022;13(1):418.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song Z, Liu T, Lai H, Meng X, Yang L, Su J, et al. A Universally EDTA-assisted synthesis of polytypic bismuth telluride nanoplates with a size-dependent enhancement of tumor radiosensitivity and metabolism in vivo. ACS nano. 2022;16:4379–96.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: from an idea to a product. Handbook of harnessing biomaterials in nanomedicine. Jenny Stanford Publishing; 2021. pp. 463–528.

  • Marques MR, Choo Q, Ashtikar M, Rocha TC, Bremer-Hoffmann S, Wacker MG. Nanomedicines-tiny particles and big challenges. Adv Drug Deliver Rev. 2019;151:23–43.

    Article 
    CAS 

    Google Scholar
     

  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng translational Med. 2021;6(3):e10246.

    CAS 
    Article 

    Google Scholar
     

  • D’Mello SR, Cruz CN, Chen M-L, Kapoor M, Lee SL, Tyner KM. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12(6):523–9.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Åslund AK, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020;326:164–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ioannidis JPA, Kim BYS, Trounson A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat Biomedical Eng. 2018;2018(11/01;2(11):797–809.

    Article 
    CAS 

    Google Scholar
     

  • Wu L-P, Wang D, Li Z. Grand challenges in nanomedicine. Mater Sci Engineering: C. 2020;106:110302.

    CAS 
    Article 

    Google Scholar
     

  • Treuel L, Eslahian K, Docter D, Lang T, Zellner R, Nienhaus K, et al. Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys Chem Chem Phys. 2014;16(29):15053–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hua S, De Matos MB, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Coty J-B, Vauthier C. Characterization of nanomedicines: A reflection on a field under construction needed for clinical translation success. J Control Release. 2018;275:254–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115(19):10907–37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang T, Wang Z, Xiang H, Xu X, Zou J, Lu C. Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging. ACS Appl Mater Inter. 2021;13(29):33850–61.

    CAS 
    Article 

    Google Scholar
     

  • Wu X, Sun X, Guo Z, Tang J, Shen Y, James TD, et al. In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J Am Chem Soc. 2014;136(9):3579–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Seo JW, Mahakian LM, Tam S, Qin S, Ingham ES, Meares CF, et al. The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model. Nucl Med Biol. 2015;42(2):155–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu W, Yang Y, Jin Q, Chao Y, Tian L, Liu J, et al. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019;12(6):1307–12.

    CAS 
    Article 

    Google Scholar
     

  • Gao Y, Kang J, Lei Z, Li Y, Mei X, Wang G. Use of the highly biocompatible Au nanocages@ PEG nanoparticles as a new contrast agent for in vivo computed tomography scan imaging. Nanoscale Res Lett. 2020;15(1):1–9.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yim G, Kang S, Kim Y-J, Kim Y-K, Min D-H, Jang H. Hydrothermal Galvanic-Replacement-Tethered Synthesis of Ir–Ag–IrO2 Nanoplates for Computed Tomography-Guided Multiwavelength Potent Thermodynamic Cancer Therapy. ACS Nano. 2019;13(3):3434–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van Geuns R-JM, Wielopolski PA, de Bruin HG, Rensing BJ, van Ooijen PM, Hulshoff M, et al. Basic principles of magnetic resonance imaging. Prog Cardiovasc Dis. 1999;42(2):149–56.

    PubMed 
    Article 

    Google Scholar
     

  • Wang Z, Xue X, Lu H, He Y, Lu Z, Chen Z, et al. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat Nanotechnol. 2020;15(6):482–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kiru L, Zlitni A, Tousley AM, Dalton GN, Wu W, Lafortune F, et al. In vivo imaging of nanoparticle-labeled CAR T cells. Proceed Nat Acad Sci. 2022;119(6):e2102363119.

    CAS 
    Article 

    Google Scholar
     

  • Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110(5):3019–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wei H, Wiśniowska A, Fan J, Harvey P, Li Y, Wu V, et al. Single-nanometer iron oxide nanoparticles as tissue-permeable MRI contrast agents. Proceed Nat Acad Sci. 2021;118(42):e2102340118.

    CAS 
    Article 

    Google Scholar
     

  • Wang J, Jia Y, Wang Q, Liang Z, Han G, Wang Z, et al. An Ultrahigh-Field‐Tailored T1–T2 Dual‐Mode MRI Contrast Agent for High‐Performance Vascular Imaging. Adv Mater. 2021;33(2):e2004917.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shin T-H, Choi Y, Kim S, Cheon J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44(14):4501–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kiessling F, Mertens ME, Grimm J, Lammers T. Nanoparticles for imaging: top or flop? Radiology. 2014;273(1):10–28.

    PubMed 
    Article 

    Google Scholar
     

  • Lux J, Sherry AD. Advances in gadolinium-based MRI contrast agent designs for monitoring biological processes in vivo. Curr Opin Chem Biol. 2018;45:121–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee SH, Kim BH, Na HB, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2014;6(2):196–209.

    CAS 
    PubMed 

    Google Scholar
     

  • Marasini S, Yue H, Ghazanfari A, Ho SL, Park J, Kim S, et al. Polyaspartic Acid-Coated Paramagnetic Gadolinium Oxide Nanoparticles as a Dual-Modal T1 and T2 Magnetic Resonance Imaging Contrast Agent. Appl Sci. 2021;11(17):8222.

    CAS 
    Article 

    Google Scholar
     

  • Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, et al. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T 1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T 1 MR images. ACS Nano. 2009;3(11):3663–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang J, Shan P, Zhao Q, Zhang S, Li L, Yang X, et al. A design strategy of ultrasmall Gd2O3 nanoparticles for T1 MRI with high performance. New J Chem. 2021;45(16):7270–7.

    CAS 
    Article 

    Google Scholar
     

  • Zhang H, Zhang J, Chen Y, Wu T, Lu M, Chen Z, et al. Hollow Carbon Nanospheres Embedded with Stoichiometric γ-Fe2O3 and GdPO4: Tuning the Nanosphere for In-vitro and In-vivo Size Effect Evaluation. Nanoscale Adv. 2022.

  • Cheung ENM, Alvares RD, Oakden W, Chaudhary R, Hill ML, Pichaandi J, et al. Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem Mater. 2010;22(16):4728–39.

    CAS 
    Article 

    Google Scholar
     

  • Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomed. 2019;14:8321.

    CAS 
    Article 

    Google Scholar
     

  • Mauri M, Collico V, Morelli L, Das P, Garcia I, Penaranda Avila J, et al. MnO Nanoparticles Embedded in Functional Polymers as T 1 Contrast Agents for Magnetic Resonance Imaging. ACS Appl Nano Mater. 2020;3(4):3787–97.

    CAS 
    Article 

    Google Scholar
     

  • Wei R, Liu K, Zhang K, Fan Y, Lin H, Gao J. Zwitterion-Coated Ultrasmall MnO nanoparticles enable highly sensitive T 1-weighted contrast-enhanced brain imaging. ACS Appl Mater Inter. 2022;14:3784–91.

    CAS 
    Article 

    Google Scholar
     

  • Jain P, Patel K, Jangid AK, Guleria A, Patel S, Pooja D, et al. Modulating the delivery of 5-fluorouracil to human colon cancer cells using multifunctional arginine-coated manganese oxide nanocuboids with MRI properties. ACS Appl Bio Mater. 2020;3(10):6852–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao J, Tian X, Yang C, Liu P, Luo N, Liang Y, et al. Ultrahigh relaxivity and safe probes of manganese oxide nanoparticles for in vivo imaging. Sci Rep. 2013;3(1):1–7.


    Google Scholar
     

  • Ji S, Chen Y, Zhao X, Cai Y, Zhang X, Sun F, et al. Surface morphology and payload synergistically caused an enhancement of the longitudinal relaxivity of a Mn 3 O 4/PtO x nanocomposite for magnetic resonance tumor imaging. Biomaterials Sci. 2021;9(7):2732–42.

    CAS 
    Article 

    Google Scholar
     

  • Vargo KB, Zaki AA, Warden-Rothman R, Tsourkas A, Hammer DA. Superparamagnetic iron oxide nanoparticle micelles stabilized by recombinant oleosin for targeted magnetic resonance imaging. Small. 2015;11(12):1409–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev. 2017;117(3):901–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, et al. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices. 2007 Oct;9(5):719–27. PubMed PMID: 17562181. Epub 2007/06/15. eng.

    PubMed 
    Article 

    Google Scholar
     

  • Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daldrup-Link HE, Golovko D, Ruffell B, DeNardo DG, Castaneda R, Ansari C, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res. 2011;17(17):5695–704.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim SJ, Lewis B, Steiner MS, Bissa UV, Dose C, Frank JA. Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking. Contrast Media Mol Imaging. 2016;11(1):55–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hao X, Xu B, Chen H, Wang X, Zhang J, Guo R, et al. Stem cell-mediated delivery of nanogels loaded with ultrasmall iron oxide nanoparticles for enhanced tumor MR imaging. Nanoscale. 2019;11(11):4904–10.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Song G, Kenney M, Chen Y-S, Zheng X, Deng Y, Chen Z, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat biomedical Eng. 2020;4(3):325–34.

    CAS 
    Article 

    Google Scholar
     

  • Piché D, Tavernaro I, Fleddermann J, Lozano JG, Varambhia A, Maguire ML, et al. Targeted T 1 Magnetic Resonance Imaging Contrast Enhancement with Extraordinarily Small CoFe2O4 Nanoparticles. ACS Appl Mater Inter. 2019;11(7):6724–40.

    Article 
    CAS 

    Google Scholar
     

  • Dan S, Naskar J, Kamsonlian S, Chattree A. Comparative study of ferromagnetic behaviour in bare and PMMA modified manganese ferrite (MnFe2O4) nanoparticles. Int Nano Lett. 2021:1–11.

  • Sitthichai S, Junploy P, Thongtem T, Pilapong C, Phuruangrat A, Thongtem S. Synthesis and Characterization of NiFe2O4 Magnetic Nanoparticles for Magnetic Resonance Imaging Application. Int J Nanosci. 2021:2150047.

  • Slabu I, Wiemer K, Steitz J, Liffmann R, Mues B, Eisold S, et al. Size-tailored biocompatible FePt nanoparticles for dual T 1/T 2 magnetic resonance imaging contrast enhancement. Langmuir. 2019;35(32):10424–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shin T-H, Kim PK, Kang S, Cheong J, Kim S, Lim Y, et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat Biomed Engineer. 2021;5(3):252–63.

    CAS 
    Article 

    Google Scholar
     

  • Kim JH, Dodd S, Ye FQ, Knutsen AK, Nguyen D, Wu H, et al. Sensitive detection of extremely small iron oxide nanoparticles in living mice using MP2RAGE with advanced image co-registration. Scientific Reports. 2021;11(1):106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meng F, Wang J, Ping Q, Yeo Y. Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano. 2018;12(7):6458–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao X, Cui R, Ji G, Liu Z. Size and surface controllable metal–organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale. 2018;10(13):6205–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park S-m, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Reviews Mater. 2017;2017/05(03;2(5):17014.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Liu L, Fan Y, El-Toni AM, Alhoshan MS, Li D, et al. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 2019;19(4):2418–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ, et al. Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem. 2015;127(49):14971–5.

    Article 

    Google Scholar
     

  • Peng H-S, Chiu DT. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev. 2015;44(14):4699–722.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev. 2016;116(5):2826–85.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thimsen E, Sadtler B, Berezin MY. Shortwave-infrared (SWIR) emitters for biological imaging: a review of challenges and opportunities. Nanophotonics. 2017;6(5):1043–54.

    CAS 
    Article 

    Google Scholar
     

  • Huang J, Jiang Y, Li J, Huang J, Pu K. Molecular Chemiluminescent Probes with a Very Long Near-Infrared Emission Wavelength for in Vivo Imaging. Angew Chem Int Edit. 2021;60(8):3999–4003.

    CAS 
    Article 

    Google Scholar
     

  • Ogawa M, Kosaka N, Choyke PL, Kobayashi H. In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69(4):1268–72.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):2491–504.

    PubMed 
    Article 

    Google Scholar
     

  • An F, Yang Z, Zheng M, Mei T, Deng G, Guo P, et al. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J Nanobiotechnol. 2020;18(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Xiao YF, An FF, Chen JX, Yu J, Tao WW, Yu Z, et al. The Nanoassembly of an Intrinsically Cytotoxic Near-Infrared Dye for Multifunctionally Synergistic Theranostics. Small. 2019;15(38):1903121.

    Article 
    CAS 

    Google Scholar
     

  • Li B, Lu L, Zhao M, Lei Z, Zhang F. An Efficient 1064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging. Angewandte Chemie. 2018;57(25):7483–7 PubMed PMID: 29493057. Epub 2018/03/02. eng.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu S, Ou H, Li Y, Zhang H, Liu J, Lu X, et al. Planar and twisted molecular structure leads to the high brightness of semiconducting polymer nanoparticles for NIR-IIa fluorescence imaging. J Am Chem Soc. 2020;142(35):15146–56.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Antaris AL, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun. 2017;8(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol. 2018;13(10):941–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang J, Lyu Y, Li J, Cheng P, Jiang Y, Pu K. A Renal-Clearable Duplex Optical Reporter for Real‐Time Imaging of Contrast‐Induced Acute Kidney Injury. Angew Chem. 2019;131(49):17960–8.

    Article 

    Google Scholar
     

  • Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-infrared‐II molecular dyes for cancer imaging and surgery. Adv Mater. 2019;31(24):1900321.

    Article 
    CAS 

    Google Scholar
     

  • Welsher K, Liu Z, Daranciang D, Dai H. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett. 2008;8(2):586–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan J, Li Q, Meng S, Li Y, Yang J, Ye Y, et al. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv Mater. 2021;33(16):2006781.

    CAS 
    Article 

    Google Scholar
     

  • Dai X, Zhao X, Liu Y, Chen B, Ding X, Zhao N, et al. Controlled Synthesis and Surface Engineering of Janus Chitosan-Gold Nanoparticles for Photoacoustic Imaging‐Guided Synergistic Gene/Photothermal Therapy. Small. 2021;17(11):2006004.

    CAS 
    Article 

    Google Scholar
     

  • Levy ES, Tajon CA, Bischof TS, Iafrati J, Fernandez-Bravo A, Garfield DJ, et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano. 2016;10(9):8423–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tao Z, Dang X, Huang X, Muzumdar MD, Xu ES, Bardhan NM, et al. Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials. 2017;134:202–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Q, Li X, Zhang L, Zuo J, Zhang Y, Liu X, et al. An 800 nm driven NaErF 4@ NaLuF 4 upconversion platform for multimodality imaging and photodynamic therapy. Nanoscale. 2018;10(26):12356–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhou J, Jiang Y, Hou S, Upputuri PK, Wu D, Li J, et al. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. ACS Nano. 2018;12(3):2643–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mu CJ, LaVan DA, Langer RS, Zetter BR. Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo. ACS Nano. 2010;4(3):1511–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zheng Z, Jia Z, Qu C, Dai R, Qin Y, Rong S, et al. Biodegradable Silica-Based Nanotheranostics for Precise MRI/NIR‐II Fluorescence Imaging and Self‐Reinforcing Antitumor Therapy. Small. 2021;17(10):2006508.

    CAS 
    Article 

    Google Scholar
     

  • Santos HD, Zabala Gutiérrez I, Shen Y, Lifante J, Ximendes E, Laurenti M, et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat Commun. 2020;11(1):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat biomedical Eng. 2017;1(1):1–22.

    Article 
    CAS 

    Google Scholar
     

  • Yang Q, Hu Z, Zhu S, Ma R, Ma H, Ma Z, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc. 2018;140(5):1715–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15(2):235–42.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhu S, Yang Q, Antaris AL, Yue J, Ma Z, Wang H, et al. Molecular imaging of biological systems with a clickable dye in the broad 800-to 1,700-nm near-infrared window. Proceed Nat Acad Sci. 2017;114(5):962–7.

    CAS 
    Article 

    Google Scholar
     

  • Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, et al. Band gap tunable, donor – acceptor – donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater. 2008;20(19):6208–16.

    CAS 
    Article 

    Google Scholar
     

  • Michaeli K, Beratan DN, Waldeck DH, Naaman R. Voltage-induced long-range coherent electron transfer through organic molecules. Proceed Nat Acad Sci. 2019;116(13):5931–6.

    CAS 
    Article 

    Google Scholar
     

  • Woo S-J, Park S, Jeong J-E, Hong Y, Ku M, Kim BY, et al. Synthesis and characterization of water-soluble conjugated oligoelectrolytes for near-infrared fluorescence biological imaging. ACS Appl Mater Inter. 2016;8(25):15937–47.

    CAS 
    Article 

    Google Scholar
     

  • Sun Y, Ding M, Zeng X, Xiao Y, Wu H, Zhou H, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci. 2017;8(5):3489–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sun Y, Qu C, Chen H, He M, Tang C, Shou K, et al. Novel benzo-bis (1, 2, 5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci. 2016;7(9):6203–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He K, Chen S, Chen Y, Li J, Sun P, Lu X, et al. Water-Soluble Donor–Acceptor–Donor-Based Fluorophore for High-Resolution NIR-II Fluorescence Imaging Applications. ACS Appl Polym Mater. 2021;3(6):3238–46.

    CAS 
    Article 

    Google Scholar
     

  • Zhou H, Yi W, Li A, Wang B, Ding Q, Xue L, et al. Specific Small-Molecule NIR‐II Fluorescence Imaging of Osteosarcoma and Lung Metastasis. Adv Healthc Mater. 2020;9(1):1901224.

    CAS 
    Article 

    Google Scholar
     

  • Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011;40(1):149–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials. 2020;228:119553.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang H, Kumar R, Nagesha D, Duclos RI Jr, Sridhar S, Gatley SJ. Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nuclear Med biology. 2015 Jan;42(1):65–70. PubMed PMID: 25277378. Epub 2014/10/04. eng.

    Article 
    CAS 

    Google Scholar
     

  • Black KC, Akers WJ, Sudlow G, Xu B, Laforest R, Achilefu S. Dual-radiolabeled nanoparticle SPECT probes for bioimaging. Nanoscale. 2015;7(2):440–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang JT-W, Rubio N, Kafa H, Venturelli E, Fabbro C, Ménard-Moyon C, et al. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra-structural analyses. J Control Release. 2016;224:22–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dogra P, Adolphi NL, Wang Z, Lin Y-S, Butler KS, Durfee PN, et al. Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics. Nat Commun. 2018;9(1):1–14.

    CAS 
    Article 

    Google Scholar
     

  • Lacerda L, Soundararajan A, Singh R, Pastorin G, Al-Jamal KT, Turton J, et al. Dynamic imaging of functionalized multi‐walled carbon nanotube systemic circulation and urinary excretion. Adv Mater. 2008;20(2):225–30.

    CAS 
    Article 

    Google Scholar
     

  • Helbok A, Rangger C, von Guggenberg E, Saba-Lepek M, Radolf T, Thurner G, et al. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomed Nanotechnol Biol Med. 2012;8(1):112–8.

    CAS 
    Article 

    Google Scholar
     

  • Gill MR, Menon JU, Jarman PJ, Owen J, Skaripa-Koukelli I, Able S, et al. 111 In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells. Nanoscale. 2018;10(22):10596–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ruan Q, Feng J, Jiang Y, Zhang X, Duan X, Wang Q, et al. Preparation and Bioevaluation of 99mTc-Labeled FAP Inhibitors as Tumor Radiotracers to Target the Fibroblast Activation Protein. Mol Pharm. 2021;19:160–71.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gao H, Liu X, Tang W, Niu D, Zhou B, Zhang H, et al. 99m Tc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale. 2016;8(47):19573–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Guo Z, Chen M, Peng C, Mo S, Shi C, Fu G, et al. pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials. 2018;179:134–43.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang X, Jaraquemada-Peláez MadG, Rodríguez-Rodríguez C, Cao Y, Buchwalder C, Choudhary N, et al. H4octox: Versatile bimodal octadentate acyclic chelating ligand for medicinal inorganic chemistry. J Am Chem Soc. 2018;140(45):15487–500.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gao F, Cai P, Yang W, Xue J, Gao L, Liu R, et al. Ultrasmall [64Cu] Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano. 2015;9(5):4976–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao J, Wei Y, Zhang Y, Wang G, Ji X, Zhong Z. Iodine-rich polymersomes enable versatile SPECT/CT imaging and potent radioisotope therapy for tumor in vivo. ACS Appl Mater Inter. 2019;11(21):18953–9.

    CAS 
    Article 

    Google Scholar
     

  • Wang P, Sun W, Wang Q, Ma J, Su X, Jiang Q, et al. Iodine-labeled Au nanorods with high radiochemical stability for imaging-guided radiotherapy and photothermal therapy. ACS Appl Nano Mater. 2019;2(3):1374–81.

    CAS 
    Article 

    Google Scholar
     

  • Mishiro K, Nishii R, Sawazaki I, Sofuku T, Fuchigami T, Sudo H, et al. Development of Radiohalogenated Osimertinib Derivatives as Imaging Probes for Companion Diagnostics of Osimertinib. J Med Chem. 2022;65(3):1835–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Simón M, Jørgensen JT, Norregaard K, Kjaer A. 18F-FDG positron emission tomography and diffusion-weighted magnetic resonance imaging for response evaluation of nanoparticle-mediated photothermal therapy. Sci Rep. 2020;10(1):1–9.

    Article 
    CAS 

    Google Scholar
     

  • Chakravarty R, Chakraborty S, Ningthoujam RS, Vimalnath Nair K, Sharma KS, Ballal A, et al. Industrial-scale synthesis of intrinsically radiolabeled 64CuS nanoparticles for use in positron emission tomography (PET) imaging of cancer. Ind Eng Chem Res. 2016;55(48):12407–19.

    CAS 
    Article 

    Google Scholar
     

  • Zhao Y, Sultan D, Detering L, Luehmann H, Liu Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64 Cu–Au alloy nanoclusters. Nanoscale. 2014;6(22):13501–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Suarez-Garcia S, Esposito TV, Neufeld-Peters J, Bergamo M, Yang H, Saatchi K, et al. Hybrid Metal–Phenol Nanoparticles with Polydopamine-like Coating for PET/SPECT/CT Imaging. ACS Appl Mater Inter. 2021;13(9):10705–18.

    CAS 
    Article 

    Google Scholar
     

  • Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 2011;11(2):814–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Petersen AL, Binderup T, Jølck RI, Rasmussen P, Henriksen JR, Pfeifer AK, et al. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroendocrine carcinoma mouse model. J Control Release. 2012;160(2):254–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials. 2012;33(31):7785–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee SB, Lee S-W, Jeong SY, Yoon G, Cho SJ, Kim SK, et al. Engineering of radioiodine-labeled gold core–shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS Appl Mater Inter. 2017;9(10):8480–9.

    CAS 
    Article 

    Google Scholar
     

  • Gao Z, Hou Y, Zeng J, Chen L, Liu C, Yang W, et al. Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc‐Labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv Mater. 2017;29(24):1701095.

    Article 
    CAS 

    Google Scholar
     

  • Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, et al. X-ray computed tomography. Nat Reviews Methods Primers. 2021;1(1):18. 2021/02/25.

    CAS 
    Article 

    Google Scholar
     

  • Viermetz M, Gustschin N, Schmid C, Haeusele J, von Teuffenbach M, Meyer P, et al. Dark-field computed tomography reaches the human scale. Proceed Nat Acad Sci. 2022;119(8):2118799119.

    Article 
    CAS 

    Google Scholar
     

  • Pontico M, Frantellizzi V, Cosma L, De Vincentis G. 111In-Octreoscan SPECT/CT hybrid imaging and 68Ga-DOTANOC PET/CT in neuroendocrine adenoma of the middle ear (NAME). Indian J Radiol Imaging. 2020;30(03):400–4.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Frantellizzi V, Conte M, De Vincentis G, editors. Hybrid imaging of vascular cognitive impairment. Elsevier: Seminars in Nuclear Medicine.  2021.

  • Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grüll H. Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials. 2010;31(25):6537–44.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zheng J, Jaffray D, Allen C. Quantitative CT imaging of the spatial and temporal distribution of liposomes in a rabbit tumor model. Mol Pharm. 2009;6(2):571–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kiessling F, Pichler BJ. Small animal imaging: basics and practical guide. Berlin: Springer Science & Business Media; 2010.


    Google Scholar
     

  • Dong YC, Hajfathalian M, Maidment PS, Hsu JC, Naha PC, Si-Mohamed S, et al. Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Sci Rep. 2019;9(1):1–13.


    Google Scholar
     

  • Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, et al. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano. 2012;6(7):5880–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang W, Lee NY, Georgi J-C, Narayanan M, Guillem J, Schöder H, et al. Pharmacokinetic analysis of hypoxia 18F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med. 2010;51(1):37–45.

    PubMed 
    Article 

    Google Scholar
     

  • de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2012;2(1):1–15.

    Article 
    CAS 

    Google Scholar
     

  • He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic delivery. 2012;3(4):457–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17(8):2950–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zuckerman JE, Choi CHJ, Han H, Davis ME. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proceedi Nat Acad  Sci. 2012;109(8):3137–42.

    CAS 
    Article 

    Google Scholar
     

  • Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloid Surf B. 2008;66(2):274–80.

    CAS 
    Article 

    Google Scholar
     

  • Pérez-Campaña C, Gómez-Vallejo V, Puigivila M, Martín A, Calvo-Fernández T, Moya SE, et al. Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano. 2013;7(4):3498–505.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gong F, Cheng L, Yang N, Gong Y, Ni Y, Bai S, et al. Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. Nat Commun. 2020;11(1):3712. 2020/07/24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tahmasbi Rad A, Chen C-W, Aresh W, Xia Y, Lai P-S, Nieh M-P. Combinational effects of active targeting, shape, and enhanced permeability and retention for cancer theranostic nanocarriers. ACS Appl Mater Inter. 2019;11(11):10505–19.

    CAS 
    Article 

    Google Scholar
     

  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat reviews Clin Oncol. 2010;7(11):653–64.

    CAS 
    Article 

    Google Scholar
     

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedi Nat Acad  Sci. 1998;95(8):4607–12.

    CAS 
    Article 

    Google Scholar
     

  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lv G, Guo W, Zhang W, Zhang T, Li S, Chen S, et al. Near-infrared emission CuInS/ZnS quantum dots: all-in-one theranostic nanomedicines with intrinsic fluorescence/photoacoustic imaging for tumor phototherapy. ACS Nano. 2016;10(10):9637–45.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Popović Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, et al. A nanoparticle size series for in vivo fluorescence imaging. Angew Chem. 2010;122(46):8831–4.

    Article 

    Google Scholar
     

  • Guo W, Chen J, Liu L, Eltahan AS, Rosato N, Yu J, et al. Laser-Induced Transformable BiS@ HSA/DTX Multiple Nanorods for Photoacoustic/Computed Tomography Dual-Modal Imaging Guided Photothermal/Chemo Combinatorial Anticancer Therapy. ACS Appl Mater Inter. 2018;10(48):41167–77.

    CAS 
    Article 

    Google Scholar
     

  • Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY, et al. On-demand drug release system for in vivo cancer treatment through self‐assembled magnetic nanoparticles. Angew Chem. 2013;125(16):4480–4.

    Article 

    Google Scholar
     

  • Asanuma D, Sakabe M, Kamiya M, Yamamoto K, Hiratake J, Ogawa M, et al. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nat Commun. 2015;6(1):1–7.

    Article 
    CAS 

    Google Scholar
     

  • Song J, Wu B, Zhou Z, Zhu G, Liu Y, Yang Z, et al. Double-layered plasmonic–magnetic vesicles by self‐assembly of Janus amphiphilic gold–iron (II, III) oxide nanoparticles. Angew Chem Int Edit. 2017;56(28):8110–4.

    CAS 
    Article 

    Google Scholar
     

  • Zhao P, Zheng M, Luo Z, Gong P, Gao G, Sheng Z, et al. NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci Rep. 2015;5(1):1–14.


    Google Scholar
     

  • Matsumoto Y, Nichols JW, Toh K, Nomoto T, Cabral H, Miura Y, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol. 2016;11(6):533–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chen J, Liu L, Motevalli SM, Wu X, Yang XH, Li X, et al. Light-triggered retention and cascaded therapy of albumin‐based theranostic nanomedicines to alleviate tumor adaptive treatment tolerance. Adv Funct Mater. 2018;28(17):1707291.

    Article 
    CAS 

    Google Scholar
     

  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proceed Nat Acad Sci. 2006;103(13):4930–4.

    CAS 
    Article 

    Google Scholar
     

  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. J Control Release. 2007;121(1–2):3–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharmaceut Res. 2009;26(1):244–9.

    CAS 
    Article 

    Google Scholar
     

  • Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS ONE. 2010;5(4):e10051.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proceed Nat Acad Sci. 2009;106(51):21495–9.

    CAS 
    Article 

    Google Scholar
     

  • Huang X, Li L, Liu T, Hao N, Liu H, Chen D, et al. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 2008;16(8):1450–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang G, Inturi S, Serkova NJ, Merkulov S, McCrae K, Russek SE, et al. High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano. 2014;8(12):12437–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arnida M, Ray A, Peterson C, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77(3):417.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, et al. Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm. 2009;6(5):1343–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, et al. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release. 2010;141(3):320–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chauhan VP, Popović Z, Chen O, Cui J, Fukumura D, Bawendi MG, et al. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape‐dependent tumor penetration. Angew Chem. 2011;123(48):11619–22.

    Article 

    Google Scholar
     

  • Black KC, Wang Y, Luehmann HP, Cai X, Xing W, Pang B, et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano. 2014;8(5):4385–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gavze E, Shapiro M. Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. Int J Multiph Flow. 1997;23(1):155–82.

    CAS 
    Article 

    Google Scholar
     

  • Park J, Butler JE. Analysis of the migration of rigid polymers and nanorods in a rotating viscometric flow. Macromolecules. 2010;43(5):2535–43.

    CAS 
    Article 

    Google Scholar
     

  • Gavze E, Shapiro M. Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J Fluid Mech. 1998;371:59–79.

    CAS 
    Article 

    Google Scholar
     

  • Gentile F, Chiappini C, Fine D, Bhavane R, Peluccio M, Cheng MM-C, et al. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech. 2008;41(10):2312–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee S-Y, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology. 2009;20(49):495101.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2(1):47–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harris BJ, Dalhaimer P. Particle shape effects in vitro and in vivo. Front Biosci (Schol Ed). 2012;4:1344–53.


    Google Scholar
     

  • Park JH, von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ, et al. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. small. 2009;5(6):694–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van De Ven AL, Kim P, Fakhoury JR, Adriani G, Schmulen J, Moloney P, et al. Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release. 2012;158(1):148–55.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, et al. Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater. 2012;22(20):4225–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomed Nanotechnol Biol Med. 2013;9(5):686–93.

    CAS 
    Article 

    Google Scholar
     

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Edit. 2014;53(46):12320–64.

    CAS 

    Google Scholar
     

  • Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliver Rev. 2019;143:3–21.

    CAS 
    Article 

    Google Scholar
     

  • Gessner A, Lieske A, Paulke BR, Müller RH. Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mat Res Part A. 2003;65(3):319–26.

    Article 
    CAS 

    Google Scholar
     

  • Gessner A, Lieske A, Paulke BR, Müller RH. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54(2):165–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Semple SC, Chonn A, Cullis PR. Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliver Rev. 1998;32(1–2):3–17.

    CAS 
    Article 

    Google Scholar
     

  • Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9-10):1521–32.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9(3):1080–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010;10(7):2543–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577.

    Article 

    Google Scholar
     

  • Kim ST, Saha K, Kim C, Rotello VM. The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res. 2013;46(3):681–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Campbell F, Bos FL, Sieber S, Arias-Alpizar G, Koch BE, Huwyler Jr, et al. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS Nano. 2018;12(3):2138–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hung C-C, Huang W-C, Lin Y-W, Yu T-W, Chen H-H, Lin S-C, et al. Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy. Theranostics. 2016;6(3):302.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yuan YY, Mao CQ, Du XJ, Du JZ, Wang F, Wang J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv Mater. 2012;24(40):5476–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang H-X, Zuo Z-Q, Du J-Z, Wang Y-C, Sun R, Cao Z-T, et al. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today. 2016;11(2):133–44.

    CAS 
    Article 

    Google Scholar
     

  • Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ, et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Investig. 1998;101(7):1401–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song W, Popp L, Yang J, Kumar A, Gangoli VS, Segatori L. The autophagic response to polystyrene nanoparticles is mediated by transcription factor EB and depends on surface charge. J Nanobiotechnol. 2015;13(1):1–12.

    CAS 
    Article 

    Google Scholar
     

  • Arias-Alpizar G, Kong L, Vlieg RC, Rabe A, Papadopoulou P, Meijer MS, et al. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat Commun. 2020;11(1):1–14.

    Article 
    CAS 

    Google Scholar
     

  • Harris JM, Martin NE, Modi M. Pegylation. Clin Pharmacokinet. 2001;40(7):539–51.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem. 2008;80(24):9597–603.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daou TJ, Li L, Reiss P, Josserand V, Texier I. Effect of poly (ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir. 2009;25(5):3040–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li C, Li F, Zhang Y, Zhang W, Zhang X-E, Wang Q. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano. 2015;9(12):12255–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Khargharia S, Kizzire K, Ericson MD, Baumhover NJ, Rice KG. PEG length and chemical linkage controls polyacridine peptide DNA polyplex pharmacokinetics, biodistribution, metabolic stability and in vivo gene expression. J Control Release. 2013;170(3):325–33.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li S, Chen H, Liu H, Liu L, Yuan Y, Mao C, et al. In vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS Nano. 2020;14(10):13681–90.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mosqueira VCF, Legrand P, Morgat J-L, Vert M, Mysiakine E, Gref R, et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharmaceut Res. 2001;18(10):1411–9.

    CAS 
    Article 

    Google Scholar
     

  • Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hak S, Helgesen E, Hektoen HH, Huuse EM, Jarzyna PA, Mulder WJ, et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano. 2012;6(6):5648–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32(1):144–51.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Gbadamosi J, Hunter A, Moghimi SM. PEGylation of microspheres generates a heterogeneous population of particles with differential surface characteristics and biological performance. FEBS Lett. 2002;532(3):338–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Livaniou E, Evangelatos G, et al. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. Int J Pharm. 2003;259(1–2):115–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu J, Bu J, Bu W, Zhang S, Pan L, Fan W, et al. Real-time in vivo quantitative monitoring of drug release by dual‐mode magnetic resonance and upconverted luminescence imaging. Angew Chem. 2014;126(18):4639–43.

    Article 

    Google Scholar
     

  • Mathijssen RH, Sparreboom A, Verweij J. Determining the optimal dose in the development of anticancer agents. Nat reviews Clin Oncol. 2014;11(5):272–81.

    CAS 
    Article 

    Google Scholar
     

  • Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv Drug Deliver Rev. 2009;61(13):1203–13.

    CAS 
    Article 

    Google Scholar
     

  • Chen C-Y, Kim TH, Wu W-C, Huang C-M, Wei H, Mount CW, et al. pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials. 2013;34(18):4501–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wood CA, Han S, Kim CS, Wen Y, Sampaio DRT, Harris JT, et al. Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nat Commun. 2021;12(1):5410. 2021/09/13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Y, Yin Q, Yen J, Li J, Ying H, Wang H, et al. Non-invasive, real-time reporting drug release in vitro and in vivo. Chem Commun. 2015;51(32):6948–51.

    CAS 
    Article 

    Google Scholar
     

  • Li X, Bottini M, Zhang L, Zhang S, Chen J, Zhang T, et al. Core–satellite nanomedicines for in vivo real-time monitoring of enzyme-activatable drug release by fluorescence and photoacoustic dual-modal imaging. ACS Nano. 2018;13(1):176–86.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yan C, Guo Z, Liu Y, Shi P, Tian H, Zhu W-H. A sequence-activated AND logic dual-channel fluorescent probe for tracking programmable drug release. Chem Sci. 2018;9(29):6176–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhu X, Li J, Peng P, Hosseini Nassab N, Smith BR. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Lett. 2019;19(10):6725–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Z, Wells CJ, King AM, Bear JC, Davies G-L, Williams GR. pH-Responsive nanocomposite fibres allowing MRI monitoring of drug release. J Mater Chem B. 2020;8(32):7264–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang S, Zhou Z, Wang Z, Liu Y, Jacobson O, Shen Z, et al. Gadolinium metallofullerene-based activatable contrast agent for tumor signal amplification and monitoring of drug release. Small. 2019;15(16):1900691.

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments