Monday, October 3, 2022
HomeNanotechnologyAtomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy

Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy

[ad_1]

  • Achanta, S. & Celis, J.-P. in Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) 631–656 (Springer, 2015).

  • Jacobs, T. D. B., Greiner, C., Wahl, K. J. & Carpick, R. W. Insights into tribology from in situ nanoscale experiments. MRS Bull. 44, 478–486 (2019).

    Article 

    Google Scholar
     

  • Park, J. Y. & Salmeron, M. Fundamental aspects of energy dissipation in friction. Chem. Rev. 114, 677–711 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Mate, C. M., McClelland, G. M., Erlandsson, R. & Chiang, S. in Scanning Tunneling Microscopy (ed. Neddermeyer, H.) 226–229 (Springer, 1987).

  • Fujisawa, S. et al. The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnology 4, 138–142 (1993).

    Article 

    Google Scholar
     

  • Bennewitz, R. et al. Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, R11301–R11304 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Liu, X.-Z. et al. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Hirano, M., Shinjo, K., Kaneko, R. & Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2645 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Li, Q., Dong, Y., Martini, A. & Carpick, R. W. Atomic friction modulation on the reconstructed Au (111) surface. Tribol. Lett. 43, 369–378 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Socoliuc, A., Bennewitz, R., Gnecco, E. & Meyer, E. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Merkle, A. P. & Marks, L. D. Liquid-like tribology of gold studied by in situ TEM. Wear 265, 1864–1869 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Kizuka, T., Yamada, K., Deguchi, S., Naruse, M. & Tanaka, N. Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys. Rev. B 55, R7398–R7401 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Sato, T., Ishida, T., Jalabert, L. & Fujita, H. Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 23, 505701 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Oviedo, J. P. et al. In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide. ACS Nano 9, 1543–1551 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sato, T. et al. Real-time observation of slipping and rolling events in DLC wear nanoparticles. Nanotechnology 29, 325707 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jacobs, T. D. & Carpick, R. W. Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Minor, A. M. & Dehm, G. Advances in in situ nanomechanical testing. MRS Bull. 44, 438–442 (2019).

    Article 

    Google Scholar
     

  • Wang, X. et al. Unstable twin in body-centered cubic tungsten nanocrystals. Nat. Commun. 11, 2497 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Li, S. et al. The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mo, Y., Turner, K. T. & Szlufarska, I. Friction laws at the nanoscale. Nature 457, 1116–1119 (2009).

    CAS 
    Article 

    Google Scholar
     

  • So, M., Jacobsen, K. W. & Stoltze, P. Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101–2113 (1996).


    Google Scholar
     

  • Dong, Y., Vadakkepatt, A. & Martini, A. Analytical models for atomic friction. Tribol. Lett. 44, 367–386 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Sorensen, M. R., Brandbyge, M. & Jacobsen, K. W. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms. Phys. Rev. B 57, 3283–3294 (1998).

    Article 

    Google Scholar
     

  • Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Hölscher, H., Schwarz, U., Zwörner, O. & Wiesendanger, R. Consequences of the stick-slip movement for the scanning force microscopy imaging of graphite. Phys. Rev. B 57, 2477–2481 (1998).

    Article 

    Google Scholar
     

  • Hölscher, H., Schirmeisen, A. & Schwarz, U. D. Principles of atomic friction: from sticking atoms to superlubric sliding. Phil. Trans. Roy. Soc. A 366, 1383–1404 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Subramaniyan, A. K. & Sun, C. Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45, 4340–4346 (2008).

    Article 

    Google Scholar
     

  • Fujisawa, S., Kishi, E., Sugawara, Y. & Morita, S. Two-dimensionally quantized friction observed with two-dimensional frictional force microscope. Tribol. Lett. 1, 121–127 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Dong, Y., Li, Q., Wu, J. & Martini, A. Friction, slip and structural inhomogeneity of the buried interface. Model. Simul. Mater. Sci. Eng. 19, 065003 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hurtado, J. A. & Kim, K.-S. Scale effects in friction of single–asperity contacts. I. From concurrent slip to single–dislocation–assisted slip. Proc. R. Soc. Lond. A 455, 3363–3384 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Maugis, D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, S. et al. Tuning friction to a superlubric state via in-plane straining. Proc. Natl Acad. Sci. USA 116, 24452–24456 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hurtado, J. A. & Kim, K.-S. Scale effects in friction of single–asperity contacts. II. Multiple–dislocation–cooperated slip. Proc. R. Soc. Lond. A 455, 3385–3400 (1999).

    CAS 
    Article 

    Google Scholar
     

  • Krenn, C. R., Roundy, D., Morris, J. W. Jr & Cohen, M. L. Ideal strengths of bcc metals. Mater. Sci. Eng. A 319, 111–114 (2001).

    Article 

    Google Scholar
     

  • Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R. & Rayson, M. J. Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale 6, 2978–2986 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z.-J., Ma, T.-B., Hu, Y.-Z., Xu, L. & Wang, H. Energy dissipation of atomic-scale friction based on one-dimensional Prandtl-Tomlinson model. Friction 3, 170–182 (2015).

    Article 

    Google Scholar
     

  • Cross, G. et al. Adhesion interaction between atomically defined tip and sample. Phys. Rev. Lett. 80, 4685–4688 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Bylander, D. & Kleinman, L. Self-consistent relativistic calculation of the energy bands and cohesive energy of W. Phys. Rev. B 29, 1534–1539 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Ehrlich, G. & Stolt, K. Surface diffusion. Annu. Rev. Phys. Chem. 31, 603–637 (1980).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. Y., Lee, I.-H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces. Phys. Rev. B 76, 245407 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ambrosetti, A. & Silvestrelli, P. L. Cohesive properties of noble metals by van der Waals-corrected density functional theory: Au, Ag, and Cu as case studies. Phys. Rev. B 94, 045124 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Vairis, A. & Frost, M. High frequency linear friction welding of a titanium alloy. Wear 217, 117–131 (1998).

    CAS 
    Article 

    Google Scholar
     

  • Schwarz, U. D. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99–106 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Gao, G., Cannara, R. J., Carpick, R. W. & Harrison, J. A. Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Ruths, M., Alcantar, N. & Israelachvili, J. Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149–11157 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Gosvami, N. N., Filleter, T., Egberts, P. & Bennewitz, R. Microscopic friction studies on metal surfaces. Tribol. Lett. 39, 19–24 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Krylov, S. Y. & Frenken, J. W. Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New J. Phys. 9, 398 (2007).

    Article 

    Google Scholar
     

  • Dong, Y., Li, Q. & Martini, A. Molecular dynamics simulation of atomic friction: A review and guide. J. Vac Sci. Technol. A 31, 030801 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Diffusive molecular dynamics and its application to nanoindentation and sintering. Phys. Rev. B 84, 054103 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires. Sci. Rep. 8, 4574 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Sun, S. et al. Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires. ACS Nano 13, 8708–8716 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liu, E., Blanpain, B. & Celis, J.P. Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Daw, M. S. & Baskes, M. I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Ding, Z., Zhou, S. & Zhao, Y. Hardness and fracture toughness of brittle materials: a density functional theory study. Phys. Rev. B 70, 184117 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments