Tuesday, September 27, 2022
HomeNanotechnologyA pyroptosis nanotuner for cancer therapy

A pyroptosis nanotuner for cancer therapy

[ad_1]

  • Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Q. et al. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579, 421–426 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Mirshafiee, V. et al. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in Kupffer cells and macrophages versus apoptosis in hepatocytes. ACS Nano 12, 3836–3852 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Reisetter, A. C. et al. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J. Biol. Chem. 286, 21844–21852 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale 10, 9141–9152 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Ploetz, E. et al. Metal–organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 32, e1907267 (2020).

    Article 

    Google Scholar
     

  • Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Borkowska, M. et al. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol. 15, 331–341 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat. Mater. 11, 817–826 (2012).

    CAS 
    Article 

    Google Scholar
     

  • He, B. et al. Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat. Commun. 9, 2393 (2018).

    Article 

    Google Scholar
     

  • Ma, X. et al. Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J. Am. Chem. Soc. 136, 11085–11092 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, K. et al. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat. Mater. 13, 204–212 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Moan, J. & Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 53, 549–553 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Wang, C. et al. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat. Commun. 6, 8524 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12, 648–654 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Castano, A. P., Demidova, T. N. & Hamblin, M. R. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn. Ther. 2, 1–23 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article 

    Google Scholar
     

  • Kang, R. et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24, 97–108.E4 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Agarwal, M. L., Larkin, H. E., Zaidi, S. I., Mukhtar, H. & Oleinick, N. L. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma cells. Cancer Res. 53, 5897–5902 (1993).

    CAS 

    Google Scholar
     

  • Wang, Y. & Wang, Z. Regulation of EGF-induced phospholipase C-γ1 translocation and activation by its SH2 and PH domains. Traffic 4, 618–630 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Lee, G. S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Chen, K. et al. Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J. Biol. Chem. 294, 11445–11457 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kuchay, S. et al. PTEN counteracts FBXL2 to promote IP3R3 and Ca2+-mediated apoptosis limiting tumour growth. Nature 546, 554–558 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Martins, W. K. et al. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 15, 259–279 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Eskelinen, E. L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Reiners, J. J. Jr, Agostinis, P., Berg, K., Oleinick, N. L. & Kessel, D. Assessing autophagy in the context of photodynamic therapy. Autophagy 6, 7–18 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Sendler, M. et al. Cathepsin B activity initiates apoptosis via digestive protease activation in pancreatic acinar cells and experimental pancreatitis. J. Biol. Chem. 291, 14717–14731 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mitsunaga, M. et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 17, 1685–1691 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Yin, Q. et al. Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nat. Commum 12, 2385 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, X. et al. Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window. Nat. Commum 11, 5828 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, S. et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano 12, 12380–12392 (2018).

    CAS 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments